
Querying Proofs
(Work in Progress)

David Aspinall1, Ewen Denney2, and Christoph Lüth3

1 LFCS, School of Informatics
University of Edinburgh

Edinburgh EH8 9AB, Scotland
2 SGT, NASA Ames Research Center

Moffett Field, CA 94035, USA
3 Deutsches Forschungszentrum für Künstliche Intelligenz

Bremen, Germany

Abstract. We motivate and introduce the basis for a query language de-
signed for inspecting electronic representations of proofs. We argue that
there is much to learn from large proofs beyond their validity, and that a
dedicated query language can provide a principled way of implementing
a family of useful operations.

1 Motivation

Increasingly, automated proof tools and interactive theorem provers are called
upon to produce evidence of their claims, in the form of representations of proofs
that may be independently checked or, perhaps, imported into another system.
These electronic proofs must connect together atomic rules of inference and
axioms in a sound way according to an underlying logic. Checking that this
has been done correctly is comparatively straightforward (though not without
difficulty [15]), although producing the proofs in the first place may have been
extraordinarily difficult.

Real proofs can be very large, perhaps consisting of tens or hundreds of
thousands of atomic rules of inference. There are many things that are interest-
ing to know about such objects, beyond the basic fact that they are correctly
constructed. For example, some natural questions when inspecting a proof are:

– What is the high-level structure of this proof, (how) can we break it down
into pieces to understand it?

– Given a proof of a property which exploits a set of domain-specific axioms,
which axioms actually occurred in the proof? (Or, in a purely logical setting,
does a proof rely on axioms of classical logic?)

– Given a problem statement which contains some existential propositions as
sub-formulae, which, if any, witnesses were found to make them true?

– Does a large proof contain duplicated parts that could be abstracted (or
generalised) into a separate lemma, using a cut-like rule to reduce the size
of the proof?

2 David Aspinall, Ewen Denney, and Christoph Lüth

When the user is trying to understand the proof construction process, partic-
ularly if using interactive or semi-interactive provers, there are further natural
questions which relate the constructed proof back to the procedures that pro-
duced it. For example, if tactics are our notion of proof producing procedure,
there are natural questions to ask which relate the proof and the tactics that
produced it:

– Given a set of tactics and a proof, which tactics were invoked in producing
the proof and how were they invoked (i.e., which subgoals were solved by
which tactics)?

– Were any tactics used repeatedly in this proof, perhaps with similar or iden-
tical inputs?

– Did some tactics get invoked but do no useful work?
– Given a failed proof (represented as a proof with unproved portions), which

tactics were tried on the unproved portions?

These kind of questions are not idle curiosities: we believe that they are
useful for practical proof engineering, when managing and maintaining sets of
properties, proofs and programs which check and create them. For example, one
of us (Denney) routinely resorts to low-level scripted tools to perform these kind
of examinations when building large safety cases supported by formal proofs
[10,5].4

One can approach this in a more principled manner with the hope of enabling
more general tools with clear foundations. In this short paper, we introduce some
first ideas for a query language designed for querying proofs.

Hierarchical proofs. We build on the foundation of hiproofs [11,2], which pro-
vide a simple abstract notion of proof tree. Hiproofs represent proof trees by
composing atomic rules of inference from an unspecified underlying logic. Going
beyond ordinary trees, they have a notion of hierarchy, provided by a way to nest
and label a subtree. This simple addition provides a precise and useful notion
of structure in the proof which can be used, for example, for noting where a
lemma was applied, or where a particular tactic or external proof tool produced
a subtree.

Sub-proof labelling, when it is present in a proof, immediately allows us
to address the first questions above concerning overall proof structure and the
application points of tactics. Subtrees provide structuring that can give hints
to understanding the constructed proof object. Labels act as reference points to
connect back to the proof-producing program. Note, however, that labels are not
enough to completely capture the story of how a proof was produced since they
only record success points, not points where some sub-procedure was attempted
but failed to produce a proof. So some forms of query may refer to a proof and

4 Of course, manipulating proof objects to change them is also interesting, although
it might sometimes be better done on the input to systems that constructs proofs.
In this preliminary study we restrict ourselves to queries which return pieces of the
queried objects, without further manipulation.

Querying Proofs 3

its construction procedure together, or, equivalently, return results by querying
the search tree that was explored during its construction.

In practice, of course, practical proof tools already have mechanisms to allow
these sort of features. For example, externally invoked procedures may have
their results (and perhaps justifications) grafted into an overall proof, or at least
recording that they were applied [12]. Noteworthy sub-trees may be represented
using names for reference (and then shared to create a dag structure) as in
TPTP [16]. In many systems, switches may be used to turn on debugging output
for proof procedures to create a lengthy log, which explains where things were
tried and failed. Similarly, although there do exist proof assistants which support
notions of proof with hierarchical aspects, for example, the proof data structure
implemented in Omega [6], these typically include implementation features and
are therefore less abstract than hiproofs.

2 Hiproofs

Hiproofs add structure to an underlying derivation system, a simple form of
logical framework. We give a brief recap here, the reader is referred to [2,11] for
full details.

A hiproof is built from (inverted) atomic inference rules a in the under-
lying derivation system: it maps input goals [γ1, . . . , γn] to output subgoals
[γ′1, . . . , γ

′
m]. A nested hiproof, appearing immediately inside a labelled box, al-

ways has a single input goal which is the root of the tree at that level.
Informally and graphically, we draw hiproofs as inverted trees with a nested

structure. Denotationally, a hiproof can be understood as a pair of a tree and a
forest with the same set of nodes, subject to some well-formedness conditions.
Syntactically, a hiproof can be written as a term s in the grammar below:

s ::= a atomic
| id identity
| [l] s labelling
| s1 ; s2 sequencing
| s1 ⊗ s2 tensor (juxtaposition)
| 〈〉 empty

(1)

Fig. 1 shows the graphic representation of an example hiproof and its term
equivalent. Boxes indicate nestings and have labels in their top corners; un-
labelled boxes contain atomic rules. Tensor places things side-by-side and se-
quencing builds “wiring” to connect things together, using identity to create
wires where a goal is not manipulated. In the example, id exports the second
subgoal from the atomic rule a outside the box labelled l.

Validation. A hiproof is called valid if it corresponds to a real proof tree in the
underlying derivation system. For example, the hiproof in Fig. 1 validates the
proof tree:

γ2
b γ3

c

γ1
a

4 David Aspinall, Ewen Denney, and Christoph Lüth

where we have some input and output goals that can be proved with the atomic
inference rules a, b and c. We write s ` g1 −→ g2 if s is a valid hiproof that
takes input goals g1 and produces output goals g2.

A valid hiproof can be seen, then, as a nested labelling applied to a flat
proof. In [2] we introduced a kernel tactic language which extends hiproofs with
the well-known procedural tactic mechanisms for computing proofs: recursion
for repetition, alternation for trying one thing or backtracking to another, and
testing subgoals to introduce decision points. In [18] this is taken further by
providing a declarative tactic language.

3 Queries

One design option would be to take an existing query language for graph (or semi-
structured) data models (e.g., see [1] for models and [3] for web query languages),
and then map from hiproofs into the existing language and use queries there.
We prefer instead to start from queries written in a native query language closer
to hiproofs, and give a direct semantics for them. This gives us a clearer idea of
what queries we need and helps keeps the semantics precise; to establish bounds
on performance (or perhaps for practical implementation) we may consider a
translations as secondary.

To begin with, we want a simple query to be able to inspect and return parts
of a hiproof. We defer relating proofs to their production mechanisms, the second
category of examples in the introduction, for later. Thus queries may return
atomic rule names a, labels l, or sub-hiproofs s. These will be selected by paths
that match the hiproof tree and pick out pieces. Queries are then constructed
by generating sets of paths using path expressions, and filtering with simple
propositions to select those of interest.

3.1 Paths

We use hiproof constructors to build up paths. A path navigates down through
the structure, choosing left and right branches of tensors, and entering boxes,
until hitting a chosen point. So the hiproof constructors themselves can serve as
labels.

([l] a ; b ⊗ id) ; [m] c

c
m

l
a

b

Fig. 1. A hiproof and its graphical representation.

Querying Proofs 5

Definition 1 (Path). A path is denoted as follows:

p ::= • | [−] p | p ⊗ − | − ⊗ p | p ; − | − ; p

A path selects a part of a hiproof (Def. 3 below), if the shape of the hiproof
fits with the path; in this case we say that the path is well-formed.

Definition 2. Given a hiproof s, the set P(s) of all paths well-formed wrt s is
defined recursively as follows:

P(a) = {•}
P(id) = {}

P([l] s) = {•} ∪ {[−] q | q ∈ P(s)}
P(s1 ⊗ s2) = {•} ∪ {p ⊗ − | p ∈ P(s1)} ∪ {− ⊗ p | p ∈ P(s2)}
P(s1 ; s2) = {•} ∪ {p ; − | p ∈ P(s1)} ∪ {− ; p | p ∈ P(s2)}

A well-formed path selects a sub-hiproof of a given hiproof, called its target,
defined in the obvious way as follows:

Definition 3 (Selection). For a hiproof s and a path p ∈ P(s), the target of
p is defined as a selection of s as follows:

sel(•, s) = s

sel([−] p, [l] s) = sel(p, s)

sel(p ⊗ −, s1 ⊗ s2) = sel(p, s1)

sel(− ⊗ p, s1 ⊗ s2) = sel(p, s2)

sel(p ; −, s1 ; s2) = sel(p, s1)

sel(− ; p, s1 ; s2) = sel(p, s2)

A simple but worthwhile observation is that selection preserves validity.

Lemma 1 (Validity Preservation). Given a validated hiproof s ` g −→1 g2,
for all p ∈ P(s), there are goals h1, h2 such that sel(p, s) ` h1 −→ h2.

This is proven by inspecting the validation of the hiproof. Given a validation,
we can extend sel(p, s) to return the concrete lists of goals h1 and h2 discharged
and recharged by s. In particular, this allows us to inspect subgoals inside the
proof, or check the arity of a sub-proof or atomic rule. An atomic rule a has an
input arity n given by its number of premises, written a : n. Axioms have zero
input, so a : 0 says that a is an axiom.

Operations and propositions on paths give us the path algebra.

6 David Aspinall, Ewen Denney, and Christoph Lüth

Definition 4 (Path concatenation). For two paths p and q, their concatena-
tion p ++ q is defined in the obvious way:

• ++ q = q

[−] p ++ q = [−] (p ++ q)

p ⊗ − ++ q = (p ++ q) ⊗ −
− ⊗ p ++ q = − ⊗ (p ++ q)

p ; − ++ q = (p ++ q) ; −
− ; p ++ q = − ; (p ++ q)

Concatenation is associative and has the empty path • as left and right unit.

3.2 Queries

A query is an operation which selects (interesting) pieces of a hiproof, given by
one or more paths. Queries are built using comprehension schemes of first-order
logic over an algebra of schemes and paths.

To be precise, let VarA, VarL, VarS and VarP be disjoint, countably infinite
sets of variables for atomics, labels, hiproofs and paths, respectively, ranged over
by the indicated capital letters. The hiproof expressions are hiproofs built over
atomic, label and hiproof variables, using the operations in (1) and the selection
operation from Def. 3 above. The path expressions are built using paths, path
variables and the path operation ++. The path propositions are expressions of
first-order logic over equations between path expressions, hiproof expressions, or
atomic propositions that constrain atomic goals or atomic rules.

An example of an expressible useful derived property is the prefix ordering
between paths:

p ≤ q ⇐⇒ ∃r. p ++ r = q.

A simple query is defined as a set comprehension scheme

{P ∈ P(s) | φ(P)}

where s is the hiproof to query and φ(P) is a path proposition selecting the
interesting paths, P . More complex queries can have multiple generating expres-
sions. Most of our queries return atomic tactics or labels, though, so we allow
the following extensions. For paths to return atomic tactics, we have

{A | P ∈ P(s), φ(A,P, s)} = {sel(P, s) | P ∈ P(s)∧ ∃A . sel(P, s) = A∧ φ(A, s)}

where φ(A,P, s) is a proposition over an atomic tactic A, a path P and the
hiproof s. Thus, we can write a query which returns a set of atomic tactics
which is a shortcut for a query which returns a set of paths guaranteed to select
an atomic tactic.

Querying Proofs 7

For the examples we give below, we constrain atomic rules by specifying a
particular subset we want to choose (for example, those that are axioms or those
that prove existential statements). Other examples examine concrete goals that
appear in the proof (hiproof validation). In the Hitac tactic language [2] we used
a matching relation assert φ as an abstract constraint on goals γ, similarly.

3.3 Example queries

Finally we illustrate our ideas with a few examples that show how to answer
some of the questions posed in Section 1.

– To find all axioms in a valid hiproof s:

Axioms(s) = {A | P ∈ P(s). sel(P, s) = A ∧A : 0}.

– To find existential witnesses inside a valid hiproof s, we suppose that the
introduction rule for the existential exI is a set of atomic tactics exI =
{exI t}t∈T indexed by a set of terms T (witnesses) in the underlying logic.
The witness query returns the instantiated existential rules:

Wit(s) = {A | P ∈ P(s). sel(P, s) = A ∧A ∈ exI}

– Which goals are input to (or output from) a tactic called tac?

Input(tac, s) = {g | P ∈ P(s). ∃S1.sel(P, s) = [tac]S1 ∧ S1 ` g −→ h}

Output(tac, s) = {h | P ∈ P(s). ∃S1.sel(P, s) = [tac]S1 ∧ S1 ` g −→ h}

– Which tactics calls themselves recursively? Note how this query has two
generating expressions P ∈ P(s) and Q ∈ P(s):

Rec(s) = {L | P ∈ P(s), Q ∈ P(s). P ≤ Q ∧
∃S1. sel(P, s) = [L]S1 ∧ ∃S2. sel(Q, s) = [L]S2}

This returns labels l which label subtrees that contain the same label l again.

– Which tactic uses atomic tactic a, i.e., inside which label does a occur? This
query returns all labels L which contain a directly, i.e., there are no other
labels inside boxes containing labels in L.

Inside(a, s) = {L | P ∈ P(s), Q ∈ P(s), R ∈ P(s).
P ≤ Q ∧ P ≤ R ∧ R ≤ Q ⇒
∃S1. sel(P, s) = [L]S1 ∧ sel(Q, s) = a ∧
¬∃M,S2. sel(R, s) = [M]S2}.

8 David Aspinall, Ewen Denney, and Christoph Lüth

4 Future Work

This brief paper introduces some of our ideas for proof query languages. Much
remains to be done: we plan to first complete our study of the semantics for
the query constructs, and then to introduce a more user-friendly language for
actually writing queries, using the above comprehension schemes to give their
denotation. Then we need to give an account of how queries are evaluated:
this might be with a direct operational interpretation, or via translation to an
auxiliary metalanguage. Further out, we want to set this work in the context of
related query languages, perhaps by translations as suggested above. See, e.g.,
[4] for some expressivity and complexity results.

Meanwhile, we are also keen to explore moving the hiproof formalisation
closer to usable implementations; not to replace incumbent systems with their
large machinery and proof libraries, but to serve as an experimental platform
for studying proof languages more precisely. See [18] for an example in this di-
rection, describing a declarative language for hiproofs and also some refactoring
operations to model changes undertaken in real proof developments. Such refac-
torings cause input changes to proof tools that don’t change statements being
proved, but may alter resultant proof objects or their structure.

It is the overall goal of our work to provide an abstract metalanguage which
can be used to represent proofs and proof manipulation in a prover-independent
way. The next step, therefore, will be to develop a mapping between our language
and concrete proof frameworks, such as TPTP.

Related work. We believe that the idea of a dedicated query language for inspect-
ing proofs is novel, although there are some related investigations on particular
ways of exploiting proofs. These include, for example, efforts to translate proofs
between systems [9]; ways to discover dependencies between parts of proofs [14]
to help simplify or rearrange; and ways to mine proofs to discover common pat-
terns [17]. Away from theorem proving, query languages have been introduced for
other forms of structured data, including semi-structured (XML-like) models [7],
and programs or their intermediate forms during compilation [8,13].

References

1. R. Angles and C. Gutierrez. Survey of graph database models. ACM Comput.
Surv., 40:1:1–1:39, February 2008.

2. D. Aspinall, E. Denney, and C. Lüth. Tactics for hierarchical proof. Mathematics
in Computer Science, 3(3):309–330, 2010.

3. J. Bailey, F. Bry, T. Furche, and S. Schaffert. Web and semantic web query lan-
guages: A survey. In N. Eisinger and J. Maluszynski, editors, Reasoning Web,
volume 3564 of Lecture Notes in Computer Science, pages 95–95. Springer Berlin
/ Heidelberg, 2005.

4. P. Barceló, C. A. Hurtado, L. Libkin, and P. T. Wood. Expressive languages for
path queries over graph-structured data. In J. Paredaens and D. V. Gucht, editors,
PODS, pages 3–14. ACM, 2010.

Querying Proofs 9

5. N. Basir, E. Denney, and B. Fischer. Deriving safety cases for hierarchical structure
in model-based development. In The 29th International Conference on Computer
Safety, Reliability and Security (SafeComp ’10), Vienna, Austria, 2010.

6. C. Benzmüller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, A. Meier, E. Melis, W. Schaarschmidt, J. Siekmann,
and V. Sorge. ΩMEGA: Towards a mathematical assistant. In Proceedings of
CADE-14, volume 1249 of LNAI. Springer, 1997.

7. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz, and R. Conejo,
editors, ICALP, volume 2380 of Lecture Notes in Computer Science, pages 597–610.
Springer, 2002.

8. R. F. Crew. ASTLOG: A language for examining abstract syntax trees. In DSL.
USENIX, 1997.

9. E. Denney. A prototype proof translator from HOL to Coq. In M. Aagaard and
J. Harrison, editors, TPHOLs, volume 1869 of Lecture Notes in Computer Science,
pages 108–125. Springer, 2000.

10. E. Denney and B. Fischer. A verification-driven approach to traceability and
documentation for auto-generated mathematical software. In Automated Software
Engineering (ASE ’09), 2009.

11. E. Denney, J. Power, and K. Tourlas. Hiproofs: A hierarchical notion of proof tree.
Electr. Notes Theor. Comput. Sci., 155:341–359, 2006.

12. J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple.
Journal of Automated Reasoning, 21:279–294, 1998. 10.1023/A:1006023127567.

13. S. Jarzabek. Design of flexible static program analyzers with PQL. IEEE Trans.
Software Eng., 24(3):197–215, 1998.

14. O. Pons, Y. Bertot, and L. Rideau. Notions of dependency in proof assistants. In
Proc. User Interfaces for Theorem Provers, UITP’98, 1998.

15. G. Sutcliffe, E. Denney, and B. Fischer. Practical proof checking for program
certification. In Proceedings of the CADE-20 Workshop on Empirically Successful
Classical Automated Reasoning (ESCAR’05), July 2005.

16. G. Sutcliffe, S. Schulz, K. Claessen, and A. Van Gelder. Using the TPTP language
for writing derivations and finite interpretations. In U. Furbach and N. Shankar,
editors, Automated Reasoning, volume 4130 of Lecture Notes in Computer Science,
pages 67–81. Springer Berlin / Heidelberg, 2006.

17. J. Urban. MizarMode—-an integrated proof assistance tool for the Mizar way of
formalizing mathematics. J. Applied Logic, 4(4):414–427, 2006.

18. I. Whiteside, D. Aspinall, L. Dixon, and G. Grov. Towards formal proof script
refactoring. In Proceedings MKM 2011, 2011. To appear.

	Querying Proofs (Work in Progress)

